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ABSTRACT

CD34 is a transmembrane phosphoglycoprotein, first identified on hematopoietic stem and pro-

genitor cells. Clinically, it is associated with the selection and enrichment of hematopoietic stem

cells for bone marrow transplants. Due to these historical and clinical associations, CD34 expres-

sion is almost ubiquitously related to hematopoietic cells, and it is a common misconception

that CD34-positive (CD34
1

) cells in nonhematopoietic samples represent hematopoietic contam-

ination. The prevailing school of thought states that multipotent mesenchymal stromal cells

(MSC) do not express CD34. However, strong evidence demonstrates CD34 is expressed not only

by MSC but by a multitude of other nonhematopoietic cell types including muscle satellite cells,

corneal keratocytes, interstitial cells, epithelial progenitors, and vascular endothelial progenitors.

In many cases, the CD34
1

cells represent a small proportion of the total cell population and

also indicate a distinct subset of cells with enhanced progenitor activity. Herein, we explore

common traits between cells that express CD34, including associated markers, morphology and

differentiation potential. We endeavor to highlight key similarities between CD34
1

cells, with a

focus on progenitor activity. A common function of CD34 has yet to be elucidated, but by ana-

lyzing and understanding links between CD34
1

cells, we hope to be able to offer an insight into

the overlapping properties of cells that express CD34. STEM CELLS 2014;32:1380–1389

INTRODUCTION

CD34 is predominantly regarded as a marker of
hematopoietic stem cells (HSC) and hematopoi-
etic progenitor cells. However, CD34 is now
also established as a marker of several other
nonhematopoietic cell types, including vascular
endothelial progenitors [1] and embryonic fibro-
blasts [2]. Accumulating evidence demonstrates
CD34 expression on several other cell types,
including multipotent mesenchymal stromal
cells (MSC), interstitial dendritic cells, and epi-
thelial progenitors [3–6], but there remains lim-
ited recognition of the role of CD34-positive
(CD341) cells outside of each individual spe-
cialty. Despite consistent evidence of expression
by many cell types, there is still a misconcep-
tion that CD34 represents a cell of hematopoi-
etic origin, and experimentally, CD341 cells are
often regarded as hematopoietic contamination
and subsequently disregarded.

This review presents evidence establishing
CD34 as a general marker of progenitor cells.
We explore common traits, such as marker
expression, morphology and differentiation
potential, and endeavor to draw focus toward
the many, disparate cell types that express
CD34, and in the process highlight key similar-
ities. CD34 expression across different cell types

and the associated implications has not previ-
ously been presented, although selected litera-
ture has reviewed expression within individual
cell groups. Although a common function of
CD34 has yet to be elucidated, analyzing and
understanding the links between cells offers an
insight into the role of CD34 in identifying pro-
genitor cells from many tissue types. A summary
of the properties of all the CD341 cell types dis-
cussed in this review can be found in Table 1.

STRUCTURE AND FUNCTION OF CD34

CD34 is a transmembrane phosphoglycoprotein,
first identified in 1984 on hematopoietic stem
and progenitor cells [36]. It has a molecular
weight of approximately 115 kDa and possesses
an extracellular domain that is heavily sialy-
lated, O-linked glycosylated, and contains some
N-linked glycosylation sites. There is a single
transmembrane helix and a cytoplasmic tail
that contains PDZ (PSD-95-Dlg-ZO-1)-domain
binding motifs [3, 37]. The most commonly
described ligand for CD34 is L-Selectin (CD62L),
however, the adapter protein CrkL, known for
adhesion regulation, also binds CD34 [38, 39].

Although the structure of CD34 is well-
investigated, there is still relatively little known
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about its function. Studies in hematopoietic cells suggest roles
in cytoadhesion and regulation of cell differentiation and pro-
liferation [40, 41]. Lymphocytes exhibit L-selectin-mediated
adhesion to CD34 surface proteins in the vascular endothe-
lium [38, 42] and in addition, it has been hypothesized that
CD34 plays a role in trafficking of HSC to niches within the
bone marrow (BM) [41]. However in contrast, CD34 has also
been associated with blocking of adhesion, particularly involv-
ing mast cells [43].

CD34 and Hematopoietic Cells

The expression of CD34 on hematopoietic progenitors and the
properties of these cells have been discussed in depth previ-
ously [7, 44, 45] and are not covered in detail in this review.
In clinical practice, CD34 expression is evaluated to ensure
rapid engraftment in BM transplants and can also be used as
a selective marker in cell sorting to enrich a population of
immature hematopoietic cells [46, 47]. Although sometimes
assumed to be solely a stem cell marker, the detection of

CD34 in BM or blood samples represents a hematopoietic
stem/progenitor mix, of which the majority of cells are pro-
genitor [44]. Human HSC are further separated from CD341

progenitor cells by low expression of CD90 and a lack of
expression of CD38, human leukocyte antigen-DR, and a panel
of mature hematopoietic lineage markers (lin2) [7]. CD341

HSC are able to differentiate into all cells of the hematopoi-
etic lineage and have a high proliferative capacity [7, 8]. Evi-
dence suggests that CD341 HSC and progenitors have the
ability to differentiate in vivo into other lineages, including
respiratory epithelial cells [48], hepatocytes [49], and cardio-
myocytes [50]. Thus far, the properties of CD341 HSC have
not been directly linked to the properties of CD341 non-HSC.

CD34 AND STROMAL CELLS

Multipotent MSC

MSC are found in most adult tissues and are a prevalent and
versatile cell type, studied extensively for regenerative

Table 1. Summary of different CD341 cell types

CD34
1

cell type Associated markers Differentiation potential Properties Reference

HSC and progenitors HLA-DR, CD38, CD117 (c-kit),
CD45, CD133

Hematopoietic cells, cardio-
myocytes, hepatocytes

Large nucleus, little cyto-
plasm, high proliferative
capacity

[7, 8]

MSC Stro-1, CD73, CD90, CD105,
CD146, CD29, CD44,
CD271

Adipogenic, osteogenic,
chondrogenic, myogenic,
angiogenic

CD341 MSC form a higher
proportion of CFU-f colo-
nies than CD342. CD341

MSC exhibit a high prolif-
erative capacity. Fibroblas-
tic cells

[9–13]

Muscle satellite cells CD56, Myf5, Desmin, M-
cadherin, CD90, CD106,
Flk-1, VEGFR, MyoD,
CD146

Myogenic, adipogenic, osteo-
genic, chondrogenic

The CD561CD341 popula-
tion may represent a
more primitive or pluripo-
tent stem cell. In vivo,
CD341 cells are located
near the basal lamina.
Small and round

[14–17]

Keratocytes CD34, CD133, L-selectin, ker-
atocan, ALDH

Fibroblastic, myofibroblastic,
adipogenic, osteogenic,
chondrogenic, corneal epi-
thelial, corneal endothelial

Dendritic morphology. In
vitro population acquires
an MSC phenotype

[18–21]

Interstitial cells CD117, vimentin, Desmin,
Connexin-43, PDGFRb

Not yet fully elucidated Triangular or spindle-shaped
with large nucleus and
long cytoplasmic proc-
esses. CD341 population
may have a stem cell/pro-
genitor role in the blad-
der, intestine, and
reproductive organs

[22–24]

Fibrocyte CD45, CD80, CD86, MHC
class I and II

Fibroblastic, myofibroblastic,
adipogenic, osteogenic,
chondrogenic

Small spindle shape. CD34 is
lost in culture and upon
maturation

[25–27]

Epithelial progenitors CD49f, CD10, CD146, CD71,
S100a4, Dkk3, CD133,
CD117, ALDH, CD90

Dermal epithelial cells, neu-
ral mesenchymal

Predominantly described in
HF niche in skin

[28–33]

Endothelial cells CD146, VE-cadherin, CD133,
CD117, CD14, CD31

Angiogenesis Elongated with filopodia.
Lack tight junctions. CD34
is present on luminal
membrane processes and
is expressed on filopodia
during in vivo angiogene-
sis. Quiescent in vivo/low
proliferation activity

[1, 34, 35]

Abbreviations: ALDH, aldehyde dehydrogenase; CD, cluster of differentiation; CFU-F, colony forming units fibroblast; Flk-1, fetal liver kinase-1; HF,
hair follicle; HLA-DR, human leukocyte antigen-DR; HSC, hematopoietic stem cells; MSC, multipotent mesenchymal stromal cells; Myf5, myogenic
factor 5; MyoD, myogenic differentiation 1; MHC, major histocompatibility complex; PDGFRb, platelet derived growth factor receptor b; VEGFR,
vascular endothelial growth factor receptor.
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medicine applications [51]. Although their in vitro mesenchy-
mal differentiation potential is well-reported, MSC are also
frequently associated with other properties including para-
crine wound healing, niche forming abilities, immune privi-
lege, and immunomodulation [52, 53]. Nomenclature of MSC
is a controversial topic, with differing opinions on whether
cells should be identified as mesenchymal stem cells or multi-
potent mesenchymal stromal cells, among many other names
[54]. In this review, we use the term multipotent mesenchy-
mal stromal cells but include a broad range of references that
refer generically to mesenchymal stem and progenitor cells.
This section includes research on MSC from different tissue
sources and discusses both freshly isolated and culture
expanded MSC.

Two recent reviews have discussed the expression of
CD34 on MSC, both with an emphasis on adipose-derived
MSC [4, 55]. While Scherberich et al. [55] concentrated on
the structure and function of CD34 in relation to MSC, Lin
et al. [4] challenged the opinion that CD34 is a negative
marker of MSC. The latter review discussed evidence demon-
strating that CD34 was an important marker in early MSC
research, highlighting research by Simmons and Torok-Storb
showing that freshly isolated, CD341 BM MSC form greater
proportions of fibroblastic colonies (colony forming units
fibroblast) than their CD342 counterparts [9]. The review also
made the observation that CD341 MSC were originally used in
screening for additional MSC immunogens, leading to the iden-
tification of Stro-1 [56]. They concluded that CD34 should be
considered a positive marker of MSC, with a particular associa-
tion to vasculature and suggested that these cells be known as
vascular stem cells [4]. While Lin et al. highlights several key
issues in the definition of an MSC, the review only briefly
touches upon a connection between CD34 and progenitor cells.

This same review was also critical of the position paper,
published in 2006, by the International Society for Cellular
Therapy (ISCT) [57], which outlined a minimal criteria for cells
to be considered MSC. These criteria, based predominantly on
MSC extracted from BM, describe a plastic-adherent, culture
expanded cell population and have subsequently been widely
adopted by the research community. One ISCT criterion states
that to be considered MSC, a cell population must be largely
negative for CD34 (�2% of the population). This is due to the
consideration that CD34 is a marker of hematopoietic cells,
alongside a number of previous studies that show an absence
of CD34 in cultured MSC [58–60]. In support of the ISCT,
establishing well-defined criteria has created a clear bench-
mark for the depiction of MSC populations, allowing more
accurate and reproducible comparisons between research
groups. MSC populations demonstrate high levels of heteroge-
neity and this diversity exists not only within different tissue
sources but also between MSC from a single source and clo-
nal MSC [60, 61]. Hence, prior to the establishment of these
criteria, many disparate cell types were described as MSC,
leading to uncertainty over MSC properties and characteris-
tics. However, in unifying and defining characterization, it is
almost certain that stromal progenitors expressing markers
that are considered negative, or not included in the ISCT crite-
ria, are being overlooked by researchers, and more impor-
tantly, actively removed when following these guidelines.

Although prevailing opinion states that MSC are CD342, in
vitro characterization predominantly takes place following cul-

ture, usually after several passages. Consequently, this is not
representative of the in vivo or initially extracted cell pheno-
type. Freshly extracted stromal cells, from various tissues,
have been shown to contain CD341 cells [9–11, 63]. The
expression of CD34 has been demonstrated more extensively
on MSC isolated from sources other than BM, such as adipose
tissue, and therefore is more widely accepted by researchers
in these areas [10, 61, 64]. CD341 MSC are present immedi-
ately following extraction but rapidly diminish in numbers
after a short time in culture [12, 13, 65]. For example, when
analyzing adipose-derived MSC at P0, Mitchell et al. described
an average of 59.2% of adherent cells expressing CD34, which
decreased to 5% at passage 2 and subsequently disappeared
[64]. This change in CD34 expression upon culture is also mir-
rored in changes of expression of other surface antigens.
Freshly extracted adipose MSC also show low expression of
CD73, CD90, and CD105 that increase upon culture; this is of
interest due to the ISCT classification of these as definitive
MSC markers [10, 64]. There are also decreases in expression
of other markers associated with MSC, such as CD106, CD146,
and CD271 [12, 13, 64, 66]. This change in MSC phenotype
upon culture is perhaps indicative of a differentiation process
or response to environmental changes.

CD341 cells represent a proportion of the total MSC pop-
ulation, and this subset of cells possesses distinct characteris-
tics. CD34 expression is associated with high colony forming
efficiency and long-term proliferative capacity [9, 12, 63].
CD341 MSC have been associated with typical MSC markers,
alongside differentially expressed markers such as CD271 and
Stro-1, and markers commonly related to other cell types
including CD45 and CD133 [10, 12, 13, 41, 42, 67, 68]. CD341

MSC have been shown to possess a greater propensity for
endothelial transdifferentiation [14, 69]. CD34 is also found
on embryonic stem cell derived MSC, further suggesting it to
be a marker of early human MSC [15].

Muscle Satellite Cells

CD34 is commonly used as a marker of both human and
mouse muscle satellite cells, also known as muscle stem cells
[16, 70]. Muscle satellite cells are small, stromal progenitor
cells that give rise to mature skeletal muscle cells. In vivo,
muscle satellite cells are quiescent, unless activated to pro-
vide myonuclei for myofibers, by increased weight-bearing
exercise or trauma. Activation of these cells, also considered
to be differentiation, corresponds to a complete downregula-
tion of CD34 [71]. CD34 has been suggested to play a funda-
mental role in the regulation of muscle progenitor cell
differentiation and establishment and maintenance of a satel-
lite cell population [71].

CD34 is not expressed on all muscle satellite cells but is
used in identification alongside other markers including CD56
[16, 17]. Developmentally, the earliest known myogenic pre-
cursors do not express CD34 and during muscle development
CD34 expression is first detected with the appearance of com-
mitted muscle satellite cells [72]. This, alongside the simulta-
neous expression of myogenic markers such as Myf5 and M-
cadherin, is suggestive of CD341 satellite cells demonstrating
a prior commitment to the myogenic fate [71].

Alternative evidence proposes that CD341 cells have the
potential to be more than myogenic precursors. Distinct MSC-
like cells, that demonstrate in vitro mesenchymal
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differentiation, have been identified in muscle satellite loca-
tions by characterizing CD34 expression [73]. Similar to MSC,
CD34 expression on muscle satellite cells does not persist dur-
ing culture and disappears as the cells differentiate. It has
been suggested that CD341 cells residing in the interstitial
spaces of muscle are related to endothelial cells, due to the
expression profile CD561CD341CD1441 [18]. These myoendo-
thelial cells show an enhanced ability to regenerate muscle,
compared to cells that express only myogenic or endothelial
markers in an in vivo mouse model. They also differentiate in
vitro down the osteogenic and chondrogenic lineages.

The different observed properties of muscle satellite cells
may be explained by the presence of distinct subsets of
CD341 cells, with distinct differentiation potentials [17]. The
markers that are coexpressed alongside CD34 have an impact
on differentiation. For example, CD341 cells that coexpress
the endothelial marker CD31 display angiogenic differentia-
tion. However, CD341CD312 cell populations demonstrate
greater potential to differentiate down the adipogenic and
myogenic lineage [17].

Corneal Keratocytes

The corneal stroma is populated with quiescent cells known
as keratocytes, which exhibit a dendritic morphology with
extensive cellular contacts [19]. Similar to muscle satellite
cells, CD34 is a well-established marker for quiescent kerato-
cytes in vivo (Fig. 1) [74, 75]. As a result of corneal trauma,
keratocytes adjacent to the wound take on a more fibroblastic
phenotype and CD34 expression rapidly disappears, as cells
become “activated” [20]. Upon activation, they shift to a
fibroblastic phenotype and are associated with stromal tissue
remodeling and scar formation [76]. Activation also occurs in
vitro, when keratocytes are cultured on tissue culture plastic,
particularly in serum-containing medium [65, 77]. Keratocyte
transformation to the fibroblast phenotype was previously
thought to be irreversible in vitro, but recent evidence dem-
onstrates that careful recapitulation of the niche-like environ-
ment and tailoring of culture conditions has the potential to
revert fibroblastic cells back to a native keratocyte phenotype
[78–80]. However, it has yet to be investigated whether CD34
expression is restored.

The function of CD34 expression in keratocytes has not
yet been elucidated, although it has been speculated that
CD34 plays roles in regulation of differentiation, adhesion,
and quiescence [75]. Although it has been suggested that
CD341 keratocytes are of hematopoietic origin [81], these
cells do not form hematopoietic colonies when cultured in
semisolid medium and CD341 cells from these cultures dis-
play a plastic adherent, dendritic morphology [65] . Although
CD341 cells disappear during in vitro culture, they can still be
seen in early cultures, when cultured in medium 199 (Fig.
1B). These cells also express typical stromal markers such as
CD105, CD90, and CD73 (Fig. 1C–1G). In vitro, keratocytes
have been shown to display characteristics of MSC [21, 82],
and after several passages, when CD34 has disappeared, con-
form to the requisite ISCT criteria [65]. Therefore, it has been
hypothesized that the keratocyte is an MSC progenitor found
in the corneal stroma [65, 83]. Additionally, recent investiga-
tions have revealed that CD341 keratocytes possess the abil-
ity to transdifferentiate into corneal epithelial [77] and
endothelial cells [22, 74]. This has led to the hypothesis that

CD34 is a marker for a tissue-specific progenitor that resides
in the stroma, which could give rise to all corneal lineages
and MSC.

Interstitial Cells and Fibrocytes

CD341 stromal cells have been described in organs including
the thyroid, dermis, tonsils, uterus, and testes [84]. CD341

cells in these cases are termed dendritic interstitial cells or
fibrocytes. Although their function remains unclear, these cells
display similar properties to CD341 MSC, keratocytes, and
muscle satellite cells, and it has been suggested that these
cells function as progenitor cells for specific tissues.

The CD341 interstitial cells of Cajal (ICC) are mesenchymal
in origin and were first identified in the gastrointestinal (GI)
tract [85]. The prevailing belief is that ICC are responsible for
modulating smooth muscle contraction through electrical and
chemical signaling as pacemaker cells. However, the discovery
of ICC in other tissues, including the pancreas, myocardium,
bladder, urethra, and blood vessels, has brought into question
the functional role of these cells [86].

Although not all ICC express CD34, immunoreactivity has
been shown in a subset of ICC in the GI tract in mice and
humans [86]. In humans, CD341 populations have been
described in the human detrusor muscle of the bladder,
uterus, and fallopian tubes [23, 24]. Investigations have identi-
fied a possible role for CD341 ICC as uncommitted progenitor
cells [25]. Moreover, ICC in the bladder of mice showed coloc-
alization of c-kit and CD34 [26] and authors have suggested a
functional relationship between CD341 ICC and mast cells.
This supports the notion that CD34 expression relates to plas-
ticity of the ICC cell type and a progenitor function.

Fibrocytes are mesenchymal progenitor cells that are
often considered distinct from MSC. Despite this, they are
quiescent cells that circulate in the bloodstream and upon
trauma are recruited to the site of injury, where the cells play
roles in inflammation and wound healing [27, 87]. These cells
have been shown to produce myofibroblastic, fibroblastic, adi-
pogenic, chondrogenic, and osteogenic phenotypes in vitro
[27, 28]. Fibrocytes are currently not recognized as MSC due
to their cell surface marker profile which includes markers
associated with leukocytes, including CD34, CD45, CD80,
CD86, and major histocompatibility complex class I and II [27,
28]. As with the aforementioned stromal cells, CD34 expres-
sion disappears during in vitro culture and in vivo upon matu-
rity and differentiation [87]. In common with other stromal
cells, it has been suggested that both keratocytes and fibro-
cytes are derived from leukocytes due to a CD341CD451 cell
surface marker profile [81].

CD34 AND EPITHELIAL CELLS

The expression of CD34 by epithelial progenitors in the skin is
widely accepted [29, 88]. In vivo, each unit of epithelium con-
tains a hair follicle (HF) and within the HF there is a stem cell
niche that maintains the epithelial layers of the skin. Trauma
to the epidermis results in migration of stem cells from this
niche to the injury site. Within the niche there are popula-
tions of multipotent epithelial stem cells and a subpopulation
of these cells is CD341 [29, 89]. The location of the CD341

cells in the HF is one of contention, depending on species.
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The majority of studies have been conducted on mice and
in these cases the CD341 population resides in the outer
root sheath (ORS) bulge, alongside other recognized stem
cells [6, 29]. Human HFs are considerably more difficult to
study, due to small size and low cell numbers. However,
indications show that the CD341 cells are not located in the
ORS bulge, but are below the bulge zone, in the suprabul-

bar region [89–91]. In humans, CD341 cells have also been
identified in the skin between the HF, in the basal interfol-
licular epidermis, but these cells are less well-investigated
[92]. It has been suggested that because the CD341 cells
are not present in the adult human ORS bulge, with the
majority of other stem cells, they are the progeny of bulge
stem cells [92].

Figure 1. CD34 expression by keratocytes. (A): Immunofluorescence showing CD34 expression by keratocytes in a section of human
cornea, counterstained with DAPI. Scale bar5 500 lm. (B–G): Keratocyte phenotype after in vitro culture. Human keratocytes were
extracted from the corneal stroma and cultured for 5 days in Medium 199 containing 20% fetal bovine serum. (B–D): Immunocytochem-
istry identifying individual cells expressing CD34, among cells expressing CD105. (E–G): Keratocytes in culture also express markers asso-
ciated with MSC, such as CD90 and CD73. All images counterstained with Hoechst 33258. Scale bar5 46 lm.
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HFs are constantly cycling through stages of active hair
growth (anagen), destruction (catagen), and rest (telogen).
During these stages, cell surface marker expression and phe-
notype within the HF is altered [6]. CD34 expression is seen
in human HFs during anagen but not during catagen and telo-
gen [89]. The authors suggest that this indicates that CD34
function relates only to epithelial cells that are proliferating
and also relates to adhesion of the root sheath cells to the
surrounding stroma. It is worth noting that although human
CD341 cells are not located in the bulge with other stem
cells, they are located in the area of the HF that demonstrates
the most clonogenic activity [30]. In human HFs, cells that
express CD34 do not express cytokeratin 15 (CK15), another
commonly used marker of epithelial progenitor cells [31], sug-
gesting either more than one population of progenitor cells
or a hierarchy of cells at different stages of differentiation
[89]. CD341 cells of the HF are multipotent and able to gen-
erate a fully stratified epidermis [6, 32]. There is some evi-
dence to show that HF stem cells, including CD341 cells, may
be pluripotent, demonstrating transdifferentiation into neural
and mesenchymal lineages [33, 93].

The majority of research into CD34 expression in epithelial
cells has been performed on skin tissue. However, there is a
population of CD341 stem cells residing in the epithelial ducts
of the salivary gland [94, 95]. These cells retain their prolifera-
tive ability when cultured in 3D structures known as sali-
spheres and demonstrate differentiation into cells and
structures reminiscent of the salivary gland. There are also
some links between CD341 stromal cells and epithelial cells.
CD341 keratocytes have been shown to express the epithelial
cell marker CK3 [96], and CD341 cells from human fetal liver
express biliary epithelial markers CK7, CK8, and CK18 [97].

CD34 AND ENDOTHELIAL CELLS

CD34 is widely regarded as a marker of vascular endothelial
progenitor cells [1, 98]. These BM-derived cells are found circu-
lating in peripheral blood [99] and their usefulness in proangio-
genic therapies has been extensively researched [98, 99]. The
properties of CD341 endothelial cells are often linked with
hematopoietic cells, as both cell types can be isolated from
peripheral blood using CD34 as an antigen. CD341 cells isolated
from peripheral blood have been studied for use in neovascula-
rization therapies [100] and furthermore have shown ability to
differentiate into cardiomyocytes [50] and osteoblasts [34].

A review published several years ago by Matsumoto et al.
[35] discussed a possible overlap between endothelial progen-
itor cells and osteoblasts. There is a circulating CD341 popula-
tion of endothelial/skeletal progenitor cells, thought to
originate in BM, capable of differentiating into both osteo-
blasts and endothelial cells. Investigations are ongoing using
the circulating CD341 cells to treat cases of nonunion frac-
tures, which often suffer from delayed healing times due to
inadequate blood supply around the injury site.

There is a subset of noncirculating adult endothelial cells
that are also CD341, most notably located within smaller
blood vessels, while most endothelial cells in larger veins and
arteries are CD342 [1]. In contrast to the typical cobblestone
morphology of endothelial cells, CD341 cells are more elon-
gated and lack tight junctions [101]. CD34 expression is pre-

dominantly found on the luminal membrane of cellular
processes but may also be seen on the abluminal membrane
of cells found at the tips of vascular sprouts [1, 102]. In addi-
tion, CD341 endothelial cells are quiescent and are thought
to be involved in migration and adhesion [1].

Human umbilical vein endothelial cells (HUVEC) are CD341

in vivo, however, when cultured in vitro, expression is lost after
several passages and only a small population of CD341 cells
are retained [1]. CD341 HUVEC have distinct morphological
characteristics, including numerous filopodia [101]. Angiogenic
stimuli provokes migration of these cells, and it has been pro-
posed that this CD341 subpopulation is homologous to sprout-
ing tip cells, a specialized type of endothelial cell present at
the leading edge during in vivo angiogenesis [101]. CD34 is
strongly expressed on the filopodia of these tip cells at sites of
active angiogenesis and evidence yet again emphasizes the
important functional role for CD34 in progenitor cell activity.

CD34 ANTIBODY SELECTION

Careful selection of the antibody used for CD34 sorting and
identification is of utmost importance during investigations.
Some CD34 monoclonal antibodies (mAbs) select for epitopes
that are sensitive to cleavage with neuraminidase (sialidase)
and glycoprotease [103]. Therefore, they are dependent on
sialic acid residues remaining on the antigen. For this reason,
an epitope classification for CD34 mAbs was devised, as seen
in Table 2. There are over 30 different mAbs for CD34 target-
ing different epitopes, and antibody clone used by studies dis-
cussed in this review can be seen in Table 2. The most
commonly used clones are MY10, a class Ib mAb, that is par-
tially dependent on the presence of sialic acid residues and
QBEnd10, a class II mAB, that has been shown to successfully
detect both sialylated and desialylated CD34 [103]. The
QBEnd10 clone is the antibody of choice for immunohisto-
chemical protocols as it is resistant to denaturation and as
the epitope is at the N-terminus of the CD34 molecule it is
ideally suited to selection protocols such as fluorescence-
activated cell sorting and magnetic-activated cell sorting. Class
III epitopes, such as 8G12 retain high specificity for all glyco-
forms of the CD34 antigen and so are suitable for many pro-
tocols including flow cytometry and immunofluorescence
[103]. Polyclonal antibodies should be avoided for CD34 sort-
ing and immunoblotting due to the possibilities of nonspecific
labeling and high variation between antibody batches.

Almost all methods of cell surface marker analysis involve
the binding of antibodies to an antigen. Antigen–antibody
interactions are noncovalent and can be reversible; therefore,
it is important to validate an experiment carefully. Key pro-
teins of interest can be interrogated using multiple methods,
such as using an alternative antibody, technique or analysis of
gene transcription. To characterize a cell population it is
essential to develop a comprehensive characterization process
comprising of a profile of markers, both surface and intracel-
lular, functional assays and, as in the case of stem cells, inter-
rogation of their differentiation potentials.

CONCLUSION

CD34 is a cell surface marker that is expressed by a broad
range of cells including hematopoietic, stromal, epithelial, and
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endothelial cells. Although the function of CD34 as a surface
antigen is still unknown, it has been linked to inhibition or
facilitation of adhesion, cell proliferation, and regulation of
differentiation [40, 41, 55, 103]. This review focused on the
use of CD34 to identify cells from diverse tissues that have
comparable properties (Table 3). The discernible link between
all CD341 cell types is progenitor and stem cell activity, and
in many cases, the CD341 population of cells shows a more
potent or pronounced differentiation capacity. Research
alludes to a correlation between cell plasticity and CD34
expression, with loss of CD34, alongside other cell surface
antigens, suggesting lineage commitment from the more posi-
tive progenitor cell. Many of these cells also demonstrate a
quiescent state in vivo, until activated to differentiate.
Although all the cell types discussed throughout this review
express CD34, they do not all display identical properties.
Many coexpress tissue-specific markers alongside CD34, sug-

gesting that the presence of CD34 may indicate a specific pro-
genitor for that tissue. Evidence for this is certainly apparent
in muscle satellite cells, keratocytes, and epithelial progeni-
tors. However, this does not necessarily limit the differentia-
tion capacity of the cells in vitro, with many of the CD341

cells linked by transdifferentiation ability.
Although CD34 may be one marker that is useful in identi-

fying progenitor populations, a single marker alone is not
appropriate for the characterization of a cell type. The expres-
sion of CD34 by all cell types discussed throughout the review
may not be exclusive. Due to a lack of cohesive research, we
cannot yet identify another marker that appears on all cells,
but markers such as CD90, CD117 (c-kit), CD146, and CD133
have been indicated on more than one cell type. To fully char-
acterize a population of stem cells it is most likely that a spe-
cific marker profile would be required, alongside clonal
assays, differentiation assays and functional profiling.

Table 2. CD34 antibody selection: epitope specificity and clones

Epitope class Clone Cell type Assays performed Reference

Ia. Sensitive to neur-
aminidase and
glycoprotease

12.8 Hematopoietic cells, MSC, endo-
thelial progenitors

Immunoblots, immunostaining,
FACS

[19, 47]

BI.3C5 MSC, keratocytes, endothelial
progenitors

Immunoblots, immunostaining,
FACS

[1, 9, 75]

Ib. Partially sensitive
to neuraminidase
and glycoprotease

ICH3 MSC, keratocytes, endothelial
progenitors

Immunoblots, immunostaining,
FACS

[1, 9, 75, 102]

MY10 Hematopoietic cells, MSC, inter-
stitial cells, endothelial
progenitors

Immunoblots, immunostaining,
FACS, Western blots

[1, 5, 9, 36, 39, 56, 84]

II. Resistant to neur-
aminidase and sen-
sitive to
glycoprotease

QBEnd10 MSC, muscle satellite cells, kera-
tocytes, interstitial cells, HF
epithelial progenitors, endo-
thelial progenitors.

Immunoblots, immunostaining,
flow cytometry

[1, 16, 23, 25, 65, 77,
86, 89, 101, 102]

III. Resistant to neur-
aminidase and
glycoprotease

563 HF epithelial progenitors Immunostaining [90]
581 Muscle satellite cells,

keratocytes
Immunostaining, flow cytometry 16, 75]

8G12 Muscle satellite cells, haemato-
poietic cells, MSC

Immunostaining, flow cytometry,
FACS

[8, 12, 40, 44, 62, 64,
73]

TUK3 Endothelial progenitors Immunoblots [1]
115.2 Endothelial progenitors Immunoblots [1]

Monoclonal (clone not stated) MSC Immunostaining, flow cytometry [10, 58, 59, 63, 69]
Polyclonal HF epithelial Flow cytometry [91]
Antibody type not stated MSC, muscle satellite cells, kera-

tocytes, HF epithelial progeni-
tors, salivary epithelial
progenitors, endothelial
progenitors

Immunostaining, flow cytometry,
FACS

[13–15, 18, 21, 30, 34,
60, 67, 68, 70, 74,
82, 83, 92, 94]

Abbreviations: FACS, fluorescence-activated cell sorting; HF, hair follicle; MSC, multipotent mesenchymal stromal cells.

Table 3. Comparable properties of CD341 cells

Comparable properties of CD34
1

cells Described in:

Potential stem/progenitor cell population HSC, MSC, muscle satellite cells, keratocytes, interstitial cells, fibrocytes, HF
epithelial stem cells, vascular endothelial progenitors

Quiescent in vivo Muscle satellite cells, keratocytes, interstitial cells, fibrocytes
Greater CFU-F capacity and high proliferative capacity in vitro HSC, MSC, HF epithelial stem cells
Loss of CD34 expression upon “activation” or differentiation

either in vivo or upon in vitro culture
MSC, muscle satellite cells, keratocytes, fibrocytes, HF epithelial stem cells

Coexpression with tissue specific markers Muscle satellite cells, keratocytes, interstitial cells, HF epithelial stem cells,
salivary gland stem cells, vascular endothelial progenitors

Transdifferentiation potential HSC, MSC, muscle satellite cells, keratocytes, HF epithelial stem cells, vascular
endothelial progenitors

Abbreviations: CD, cluster of differentiation; CFU-F, colony forming units fibroblast; HF, hair follicle; HSC, hematopoietic stem cells; MSC, multipo-
tent mesenchymal stromal cells.
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The culture and propagation of adherent CD341 cells in
vitro is challenging. This is conceivably due to the association
of CD34 with quiescence and adhesion, and the loss of CD34
expression upon differentiation. Culture on tissue culture plas-
tic and in serum-containing medium creates an environment
dissimilar to the in vivo environment, forcing the cells to pro-
liferate and differentiate, subsequently losing CD34. If CD341

cells are to be investigated in vitro, more thought, specialized
culture conditions and optimization is required to recapitulate
an environment more similar to the in vivo niche.

By compiling this review, we would like to propose that
CD34 is considered as a surface antigen suitable for the selec-
tion of subpopulations of progenitor cells from larger cell popu-
lations, including mesenchymal cells, and is not associated only
with hematopoietic and endothelial cells. Recognizing CD34 as
a progenitor marker will allow further research into this distinct
subset of cells, which potentially possess a pronounced differ-
entiation capacity. If culture and propagation techniques for
these cells can be optimized, CD341 cells from many tissue
types may represent a source of progenitor cells that can be
exploited clinically in regenerative medicine strategies.
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